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Chapter 1

Linear vector spaces

1.1 Vectors, bases, components

A general vector1 in three-dimensional space, may be written as v =
∑

i viei where e1, e2, e3
form a basis and v1, v2, v3 are components of the vector relative to the basis. With a matrix
notation

v =
(

e1 e2 e3
)





v1
v2
v3



 (1.1)

where basis vectors are collected in a row matrix and vector components in a column.

With an alternative choice of basis, the same vector might be written v =
∑

i v̄iēi, where
ēi = e1T1i + e2T2i + e3T3i or in matrix form

(

ē1 ē2 ē3
)

=
(

e1 e2 e3
)





T11 T12 T13
T21 T22 T23
T31 T32 T33



 (1.2)

The last two equations may be written more briefly as

v = ev = ēv̄ (a); ē = eT (b). (1.3)

The columns v, v̄ represent the vector v with respect to the two alternative bases, while
the square matrix T describes the transformation from the one basis to the other. Trans-
formations are simply changes of description: the vector v is not affected by the change,
being considered an invariant. To express v relative to the second basis we shall have to
write v = ēv̄ = eTv̄ and comparison with (1.3a) shows that

v = Tv̄, v̄ = T−1v. (1.4)

1Some knowledge of elementary vector algebra and of the use of matrix notation will be assumed.
This may be found elsewhere (e.g. in Book 11 of the series Basic Books in Science, also published on
this website). Remember that ‘ordinary’ three-dimensional vector space is linear (two vectors may be
combined by ‘addition’ to give a third, and may be multiplied by arbitrary numbers) and that the term
‘three-dimensional’ means that three independent vectors are sufficient to determine all others.
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Here T−1 is the inverse of T, with the property TT−1 = T−1T = 1, where 1 is the unit
matrix, with elements (1)ij = δij , where δij is the ‘Kronecker symbol’ (=1, for i = j; =0,
otherwise).

1.2 Transformations. The tensor concept

The last few equations allow us to distinguish two types of transformation law. In changing
the basis according to (1.2), the basis vectors follow the rule

ei → ēi =
∑

j

ejTji, (1.5)

(summation limits, 1 and 3, will not usually be shown) while, from (1.4),

vi → v̄i =
∑

j

(T−1)ijvj. (1.6)

In order to compare these two transformation laws it is often convenient to transpose2

equation (1.3b)and to write instead of (1.5)

ei → ēi =
∑

j

T̃ijej (1.7)

so that the vectors and transformation matrices occur in the same order in both equations;
and also to introduce

U = T−1. (1.8)

The ‘standard’ transformation laws then look nicer:

v̄i =
∑

j

Uijvj, ēi =
∑

j

T̃ijej. (1.9)

Each matrix in (1.9), U and T̃, may be obtained by taking the inverse of the other and
transposing; and the alternative transformations in (1.9) are said to be contragredient.
A special symbol is used to denote the double operation of inversion and transposition,
writing for any matrix Ă = Ã−1; and since T = U−1 it follows that T̃ = Ŭ. Both
matrices in (1.9) may thus be written in terms of the matrix U(= T−1), the second
equation becoming ēi =

∑

j Ŭijej.

The systematic study of transformations is the subject of the tensor calculus, to be de-
veloped later in more detail; but even at this point it is useful to anticipate a simple
convention to distinguish quantities which follow the two transformation laws in (1.9):
the indices that label quantities behaving like the basis vectors ei will be left in the sub-
script position, but those that label quantities transforming like the vector components

2The transpose of a matrix A is indicated by Ã and is obtained by interchanging corresponding rows
and columns. Note that in transposing a matrix product the factors will appear in reverse order.
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vi will be written with superscripts. The two types of transformation are also given the
special names ‘covariant’ and ‘contravariant’, respectively, and assume the forms

Covariant : ei → ēi =
∑

j

Ŭijej (a)

(1.10)

Contravariant : vi → v̄i =
∑

j

Uijv
j (b)

The fact that the vector v is, by definition, invariant against a change of coordinate
system is now expressed in the equation

v =
∑

i

ēiv̄
i =

∑

i

∑

j

Ŭijej
∑

k

Uikv
k

=
∑

j,k

(

∑

i

U−1
jiUik

)

ejv
k =

∑

j,k

δjkejv
k =

∑

j

ejv
j

and this invariance property is quite independent of the precise nature of the quantities
with upper and lower subscripts.

Sets3 of quantities {Ai} and {Bi} that transform, when the basis is changed, according
to (1.10a) and (1.10b) respectively, are called “rank-1 tensors”. Thus,

Covariant : Ai → Āi =
∑

j

ŬijAj (a)

(1.11)

Contravariant : Bi → B̄i =
∑

j

UijB
j (b)

where the covariant quantities transform cogrediently to the basis vectors and the con-
travariant quantities transform contragrediently. From one covariant set and one con-
travariant set we can always form an invariant

∑

i

AiB
i = invariant, (1.12)

which is a tensor of rank zero. In later Sections we meet tensors of higher rank.

1.3 Scalar products and the metric

In elementary vector analysis the three basis vectors e1, e2, e3 define the axes of a rectilinear
Cartesian coordinate system are thus chosen to be orthogonal and of unit length: this
means there exists a scalar product, ei · ej = |ei||ej| cos θij, |ei| and |ej| being the lengths

3A whole set is indicated by putting a typical member in braces, {...}.
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of the vectors and θij the angle between them, and that ei · ej = δij. Such a space is said
to possess a metric, which makes it possible to define the length of any vector and the
angle between any pair of vectors. In general, the so-called ‘metric matrix’ is simply the
array of all basis-vector scalar products:

g =





e1 · e1 e1 · e2 e1 · e3
e2 · e1 e2 · e2 e2 · e3
e3 · e1 e3 · e2 e3 · e3



 (1.13)

and when the basis vectors are orthogonal and of unit length this means g = 1, with 1s on
the diagonal and 0s elsewhere. It is, however, often useful to use an oblique basis in which
the vectors are neither orthogonal nor of unit length: in such cases g is non-diagonal, but
(by definition) always symmetric.

To express a scalar product x · y in terms of the vector components we then use

x · y = (
∑

i

xiei) · (
∑

j

yjej) =
∑

i,j

xiyj(ei · ej) =
∑

i,j

xigijy
j,

or, in matrix notation,
x · y = x̃gy (1.14)

where x̃, the transpose of x, is the row matrix x̃ = (x1 x2 x3). We note that when the
basis is rectangular Cartesian, with g = 1,

x · y = x1y1 + x2y2 + x3y3, |x|2 = x · x = (x1)2 + (x2)2 + (x3)2. (1.15)

When the vectors are unit vectors, |x| = |y| = 1 and the scalar product defines the angle
between the two vectors:

x · y = cos θ = x1y1 + x2y2 + x3y3 (1.16)

– expressions familiar from elementary Cartesian geometry. It is also to be noted that the
metric matrix may be written as a column-row product:

g =





e1
e2
e3



 ·
(

e1 e2 e3
)

= ẽ · e, (1.17)

where the dot applies to all pairs of elements from the column and the row.

1.4 The reciprocal basis

In the non-trivial case where g is not the unit matrix and the basis is consequently oblique,
it is convenient to introduce, alongside the ‘direct’ basis e, a ‘reciprocal’ basis f defined
by

f = eg−1, (fi =
∑

j

ej(g
−1)ji) (1.18)
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in which the existence of the inverse matrix g−1 is guaranteed by the assumed linear
independence of the two basis sets. According to (1.17), the scalar products of any vector
ei of the direct basis and any fj of the reciprocal basis may be displayed in the matrix

ẽ · f = ẽ · eg−1 = gg−1 = 1. (1.19)

In other words,
ei · fj = fj · ei = δij (1.20)

– which means that every reciprocal vector fi is perpendicular to the other two direct
vectors ej, ek (j, k 6= i) and has a length reciprocal to that of the direct vector ei. Although
it is commonly said that e = (e1 e2 e3) defines the ‘direct space’, while f = (f1 f2 f3)
defines the ‘reciprocal space’, it should be clearly understood that there is only one space,
in which e and f provide alternative bases, linked by the transformation (1.18). It is
therefore possible to express any given vector v equally well in terms of either the e’s or
the f’s. It is convenient to use ei as a new name for the reciprocal vector fi, noting that
this vector is not the same as ei, thus obtaining from equation (1.18) the definition

ei =
∑

j
ej(g

−1)ji. (1.21)

Let us put v =
∑

i fivi, where vi will be the i-component of v with respect to the reciprocal
basis: then, as a result of (1.20), it follows that vi = fi · v. Consequently, we can write the
vector v in two forms:

Direct space : v =
∑

i

eiv
i vi = ei · v (a)

(1.22)

Reciprocal space : v =
∑

i

eivi vi = ei · v. (b)

The scalar-product expressions for the components both follow as a result of (1.20), which
we now rewrite as

ei · ej = ej · ei = δij . (1.23)

To summarize, then, we have obtained two equivalent forms of any vector:

v =
∑

i

eiv
i =

∑

i

eivi. (1.24)

The first sum in (1.24) is known to be invariant against any basis change (see (1.10) et seq).
It must later be confirmed that the superscript/subscript notation for reciprocal vectors
and corresponding components is appropriate i.e. that they do indicate contravariant and
covariant character, respectively.
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Chapter 2

Elements of tensor algebra

2.1 Tensors of higher rank

Let us return to the two fundamental transformation laws (1.10a,b), for basis vectors and
vector components in a linear vector space, namely

Covariant : ei → ēi =
∑

j

Ŭijej (a)

(2.1)

Contravariant : vi → v̄i =
∑

j

Uijv
j (b)

The idea of classifying various entities according to their transformation properties is easily
generalized: if, for example, {φi} and {ψj} are two contravariant sets of rank 1, then the
set of all products {φiψj} forms a contravariant set of rank 2, with the transformation
law

φiψj → φ̄iψ̄j =
∑

k,l

UikUjlφ
kψl, (2.2)

the individual products being the contravariant components of a tensor of rank 2. More
generally, sets of quantities {Aij}, {Ai

.j}, {Aij} are, respectively, contravariant, ‘mixed’
and covariant tensor components when they transform in such a way that1

Āij =
∑

k,l

UikUjlA
kl , (a)

Āi
.j =

∑

k,l

UikŬjlA
k
.l , (b) (2.3)

Āij =
∑

k,l

ŬikŬjlAkl , (c)

and when there are m factors of U -type and n of Ŭ -type then we speak of a tensor of rank
(m+n), withm degrees of contravariance and n of covariance. The order of the upper and

1A dot is used to indicate the position of a ‘missing’ index, to avoid possible ambiguity (see text).
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lower indices is of course important; any missing indices in either sequence are commonly
indicated using dots. As a simple example, it may be noted that the components of the
metric, gij = ei · ej, form a rank-2 covariant set because in the basis change (2.1a) they
are replaced by

ḡij =
∑

k,l

ŬikŬjlgkl, (2.4)

as in the last equation of (2.3).

2.2 Metric of the reciprocal basis

We are now in a position to verify that the reciprocal vectors {ei} in (1.24) do indeed
follow the contravariant transformation law (1.11b). Thus, the analogue of (1.21), after a
basis change, will be

ēi =
∑

j

ēj(ḡ
−1)ji, (2.5)

where ḡ is defined like g but in terms of the new basis vectors {ēi}. Here we have antic-
ipated the contravariant nature of the elements of g−1, whose transformation properties
must now be confirmed. To do so we express g in the form (1.17): thus g = ẽ · e and on
transformation (writing (1.10a) as ē = eU−1)

ḡ = ˜̄e · ē = Ũ−1
ẽ · eU−1 = Ũ−1gU−1.

On remembering that the inverse of a product is the product of the inverses in reverse
order, we may write ḡ−1 = Ug−1Ũ and hence the elements of the inverse metric transform
according to

(g−1)ij → (ḡ−1)ij =
∑

k,l

UikUjl(g
−1)kl (2.6)

The indices on the matrix g−1 are thus correctly shown in the upper position, its elements
evidently forming a rank-2 contravariant set2.

On using (2.6) in (2.5) it follows at once that

ēi =
∑

j

ēj(ḡ
−1)ji

=
∑

j

∑

m

emŬjm

∑

k,l

Ujk(g
−1)klUil

=
∑

k

ek
∑

l

(g−1)klUil =
∑

l

Uile
l.

2This also follows from the fact that g−1 is the metrical matrix for the reciprocal basis, according to
(1.21), with elements ei · ej – justifying the contravariant position of the indices.
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In other words the result of a basis change is

ei → ēi =
∑

j

Uije
j (2.7)

– confirming again that the reciprocal vectors {ei} form a rank-1 contravariant set.

2.3 The metric tensors:

raising and lowering of indices

At this point we notice that the practice of writing row/column indices on the transforma-
tion matrix U always in the subscript position (with no tensorial significance) introduces
an anomaly: when summing over a repeated index in, for example, equations (2.2) and
(2.6), the index appears once in the upper position and once in the lower; but the posi-
tions of the remaining indices do not correctly indicate the tensor character of the result.
This anomaly may be removed by a simple change of notation: the row index in Uij will

be raised to the upper position, and similarly for the column index in Ŭij . From now on,
then,

Uij → U i
j , Ŭij → Ŭ j

i . (2.8)

With this new notation, (2.1a) and (2.7) may be rewritten as

ei → ēi =
∑

j

Ŭ j
i ej (a), ei → ēi =

∑

j

U i
je

j (b), (2.9)

where the tensor character of the result is in each case correctly indicated by the position
of the un-summed index. It is easily verified that, with corresponding changes, all the
tensor equations encountered so far become notationally consistent. Thus for example
the equations (2.3) take the form

Āij =
∑

k,l

U i
kU

j
l A

kl (a); Āi
.j =

∑

k,l

U i
kŬ

l
jA

k
.l (b); Āij =

∑

k,l

Ŭk
i Ŭ

l
jAkl (c). (2.10)

The un-summed indices on the right then correctly show, in each case, the tensor character
of the results on the left.

Finally, two important properties of the metric will be noted. These become evident when
the reciprocal, vectors defined in (1.21), are written in subscript/superscript notation as

ei =
∑

j

gijej, (2.11)

where gji is the ji-element of the reciprocal matrix g−1. This means that summation over
a common index (j), one upper and one lower, has effectively removed the covariance
of ei and replaced it by contravariance. In the same way it is easy to verify that the
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contravariant vectors ei are replaced by their covariant counterparts on multiplying by
the doubly covariant quantities gij and summing over the common index j:

ei =
∑

j

gije
j. (2.12)

The metric tensors, gij and gij, thus provide, respectively, the means of ‘raising or low-
ering a tensor index’ i.e. changing one degree of tensor character from covariance to
contravariance or vice versa. Of course, this operation does not change the tensor quan-
tities themselves in any way: it changes only the mode in which they are described. We
note in passing that the metric tensors in the direct and reciprocal bases are related by

gijg
jk = δki (2.13)

– this expressing (in tensor notation) the fact that the metric matrices are related by
gg−1 = 1.
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Chapter 3

The tensor calculus

3.1 General coordinate systems

So far, it was assumed always that the coordinate system was rectilinear : there was a
unique set of basis vectors, defining the directions of the axes, and the position of every
point in space was specified by giving the components of its position vector relative to
those same axes. The only transformations considered were those in which the axes were
simply rotated about the origin, through angles determined by the given elements of
the matrix T. The transformations were linear. It is often useful, however, to employ
more general coordinates, q1, q2, ..., such that every point in space is identified as a
point of intersection of the surfaces on which q1 = constant, q2 = constant, etc.. Thus,
q1, q2, q3 might be the spherical polar coordinates r, θ, φ (Fig.1) and the surfaces considered
would then be a sphere (radius r); a cone (half-angle θ) around the z axis; and a plane
(containing the z axis and inclined at an angle φ to the x axis). The same point, P
say, could be specified in any other coordinate system by giving another set of numbers
q̄1, q̄2, q̄3, possibly with a quite different significance e.g. they could be the Cartesian
coordinates x, y, z. Every coordinate must be a function of position of P , expressible in
terms of whatever coordinates we care to use; and consequently

q̄i = q̄i(q1, q2, ...), qi = qi(q̄1, q̄2, ...). (3.1)

It is clear, however, that the position vector of P can no longer be written in the form
r = q1e1 + q2e2 + q3e3 because there are no basis vectors ei corresponding to a universal
set of rectilinear axes. On the other hand, it is possible to define at any point P a local
set of basis vectors e1, e2, e3 which are simply unit normals to the three surfaces q1 =
constant, q2 = constant, q3 = constant, respectively, at point P . Thus, in spherical polar
coordinates, e1 will be a vector normal to the sphere on which q1 has a constant value,
as in Fig.2, while e2 will be normal to the surface of a cone, and e3 to a plane containing
the z axis. In terms of these vectors, the infinitesimal dr which leads to point P ′ with
r′ = r + dr will be expressed as

dr = e1dq
1 + e2dq

2 + e3dq
3, (3.2)
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where we anticipate the transformation properties of the components by using superscripts
on the differentials, emphasizing also the fact that the vector dr is an invariant. In fact,
if new coordinates q̄1, q̄2, q̄3 are introduced, so that point P is alternatively identified as
the intersection of three new coordinate surfaces, then it will be possible to write also

dr = ē1dq̄
1 + ē2dq̄

2 + ē3dq̄
3. (3.3)

The change {ei} → {ēi} corresponds to a local rotation of basis; and if dr is to remain
invariant then the change {dqi} → {dq̄i} must follow a contragredient transformation law.

All the theory developed in Chapter 1 can now be taken over in its entireity, with matrices
U, Ŭ describing, respectively, the changes of components and of basis vectors at any point
P . The only new features will be

• the elements of the matrices vary continuously, from point to point in space, and
will thus be continuous functions of the coordinates;

• the lengths and inclinations of the basis vectors {ei} will also vary continuously with
the coordinates of the point to which they refer

• the basic contravariant transformation law will refer to the change of components
of an infinitesimal vector dr, at the point P considered, when new coordinates are
intoduced.

Such transformations are linear only because we are considering the infinitesimal neigh-
bourhood of P : the relationship between the two sets of coordinates themselves (not their
differentials) is clearly nonlinear.

To identify the elements of the matrices U, Ŭ we start from the functional relationships
(3.1) and consider two infinitely near points, with coordinates {qi} and {qi + dqi}, in the
one frame, and {q̄i} and {q̄i + dq̄i}, in the other. By simple partial differential calculus,

dq̄i =
∑

j

(

∂q̄i
∂qj

)

dqj =
∑

j

Uijdq
j

where the indices on the differentials are put in the superscript position, as in (3.2), to
anticipate their contravariant character1.

It is also convenient to adopt the conventions introduced at the end of Chapter 1, writing
the row and column indices of the matrix U in the upper and lower positions, respectively,
so that the last equation takes the form

dq̄i =
∑

j

U i
jdq

j, (3.4)

where

U i
j =

(

∂q̄i
∂qj

)

. (3.5)

1Note that the coordinates themselves, {qi} are not components of a tensor; and their indices are left
in the subscript position.
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Invariance of the infinitesimal vector dr, against change of coordinate system, then implies
that in the same change

ei → ēi =
∑

j

Ŭ j
i ej (3.6)

where Ŭ j
i = (U−1)ji. The summations in (3.4) and (3.6) both involve one upper index

and one lower, the remaining ‘free’ index showing the tensor character of the result.

To express the elements of Ŭ directly as partial derivatives, without inverting a matrix,
we may start from the second relationship in (3.1), expressing the differential dqi first in
terms of the q̄j and then again in terms of the qk, to obtain

dqi =
∑

j

(

∂qi
∂q̄j

)

dq̄j =
∑

jk

(

∂qi
∂q̄j

)(

∂q̄j
∂qk

)

dqk.

This equation expresses dqi in the form
∑

k Aikdqk and is satisfied only when Aik = δik.
Thus

∑

j

(

∂qi
∂q̄j

)(

∂q̄j
∂qk

)

= δik. (3.7)

The second partial derivative is the jk-element of U: the first must therefore be the ij-
element of U−1 (i.e. the ji-element of Ŭ), so that the ‘chain rule’ for a matrix product
will give the ik-element of the unit matrix. With the same notation as in (2.8) (Ŭ)ji = Ŭ i

j

and (3.7) becomes
∑

j

Ŭ i
jU

j
k = δik, (3.8)

where (cf.(3.3))

Ŭ i
j =

(

∂qi
∂q̄j

)

. (3.9)

In the standard textbooks on tensor calculus it is customary to write all matrix elements
explicitly as partial derivatives. The standard transformation laws for rank-1 contravari-
ant and covariant tensors thus become, respectively,

Ai → Āi =
∑

j

(

∂q̄i
∂qj

)

Aj, (3.10)

Bi → B̄i =
∑

j

(

∂qj
∂q̄i

)

Bj, (3.11)

and tensors of higher rank, with m degrees of contravariance and n of covariance, may be
defined as in (2.3). Thus, for example,

C ij
k → C̄ ij

k =
∑

r

∑

s

∑

t

(

∂q̄i
∂qr

)(

∂q̄j
∂qs

)(

∂qt
∂q̄k

)

Crs
t (3.12)

is the transformation law for a rank-3 tensor with two degrees of contravariance and one
of covariance.
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The summation convention

It is already clear that the equations of the tensor calculus, although expressing only a
simple generalization of the equations of Section 1.1 for linear vector spaces, are becoming
quite cumbersome; and that their interpretation requires a fair amount of mental gym-
nastics. Such difficulties are greatly reduced by using a summation convention, due to
Einstein – with which explicit summation symbols are completely eliminated. It may be
stated as follows:

Whenever an index is repeated, in the expression on one side of a tensor equa-
tion, then summation over all values of that index will be understood.

The resultant simplification may be carried one step further by using the contravariant
and covariant matrix elements, U i

j , Ŭ
i
j defined in (3.7) and (3.9), in place of the partial

derivatives they represent. The economy of this notation is evident when we rewrite the
last three equations to obtain

Āi = U i
r A

r,

B̄i = Ŭ r
i Br, (3.13)

C̄ ij
k = U i

rU
j
s Ŭ

t
k C

rs
t .

The text assumes a more peaceful appearance and the significance of the indices, as
contravariant or covariant, becomes obvious: in particular, every summation involves one
upper index and one lower; and the positions of the indices relate to the upper and lower
parts of each partial derivative in (3.5) and (3.9). The ‘summation convention’ will be
used in this and all later Chapters.

3.2 Volume elements, tensor densities,

and volume integrals

In three dimensions, using rectangular Cartesian coordinates, an infinitesimal element of
volume is easily defined as dV = dxdydz – the product of the lengths of the sides of a
rectangular box, normally taken positive. More generally, using an arbitrary coordinate
system and tensor notation, dV will have to be related to three infinitesimal displacements
d1q

i, d2q
j, d3q

k – where it will be convenient to define each in terms of its contravariant
components. But clearly the expression2

dV ijk = d1q
i, d2q

j, d3q
k (3.14)

will not serve the purpose, being simply one component of a rank-3 contravariant tensor
and taking no account of the metric of the space.

With rectangular axes and displacements along the three axial directions, each vector
would have only one non-zero component and dV 123 = d1q

1d2q
2d3q

3 would apparently

2It is understood that dV ijk depends on the three displacements chosen, but to avoid confusion the
labels 1,2,3 are suppressed.
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be satisfactory; but even then it would lack uniqueness – for the arbitrary reversal of
any axis would introduce a − sign, while enumeration of the three displacements in a
different order would make no difference to the product. Evidently we must seek a recipe
for obtaining a single invariant number from the rank-3 tensor components, which will
reduce to the elementary definition on specializing to a rectangular Cartesian system.

To this end let us consider the replacement of (3.14) by the determinant

dV ijk =

∣

∣

∣

∣

∣

∣

d1q
i d1q

j d1q
k

d2q
i d2q

j d2q
k

d3q
i d3q

j d3q
k

∣

∣

∣

∣

∣

∣

. (3.15)

This is an antisymmetric rank-3 tensor whose expansion contains only non-zero products
of the form ±dV 123; and it thus depends on the single number dV = dV 123 which is the
product of the diagonal elements and, when the axes are rectangular Cartesian, coincides
with the volume element determined by elementary geometry. To confirm that (3.15)
provides a satisfactory definition, a considerable digression is necessary; and this will
introduce the new concept of a tensor density3

We start by introducing a convenient method of manipulating determinants. This depends
on the introduction of the Levi-Civita symbol (not in itself a tensor) defined by

ǫijk = 0, no index repeated,

= +1, ijk an even permutation of 123,

= −1, ijk an odd permutation of 123. (3.16)

Any determinant

D =

∣

∣

∣

∣

∣

∣

d11 d12 d13
d21 d22 d23
d31 d32 d33

∣

∣

∣

∣

∣

∣

. (3.17)

can then be written in the form

D = (3!)−1ǫijkǫlmndildjmdkn (3.18)

– for the implied summations include all possible permutations of the same product of
d-factors and the result must therefore be divided by 3!.

Two determinants of particular importance are (i) that of the metric matrix |g|; and (ii)
that of the matrix |U| in the basic contravariant transformation law. From the last result
these can be written

g = |g| = (3!)−1ǫijkǫlmngilgjmgkn, (a)

U = |U| = (3!)−1ǫijkǫlmnU
i
lU

j
mU

k
n . (b) (3.19)

From (3.19a) it follows, on putting g = 1, that

ǫijkǫijk = 3!. (3.20)

3Also referred to (e.g. by Fock) as a ‘pseudo-tensor’; and sometimes as a ‘relative tensor’.
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Next let us define a rank-3 contravariant tensor, antisymmetric in all indices, by

Eijk = Eǫijk, (3.21)

so that E = E123 is the single component that determines all others. In the transformation
described by the matrix U,

Eijk → Ēijk = ElmnU i
lU

j
mU

k
n

and, on multiplying by ǫijk and using (3.20), this gives

Ē3! = EǫlmnǫijkU
i
lU

j
mU

k
n = E3!U.

Consequently
Ē = EU, (U = det|U i

j |) (3.22)

and ǫijk in (3.16) is not a tensor until the scalar factor E is attached, as in (3.21). However,
from (3.19a), EijkElmngilgjmgkn is certainly an invariant (upper and lower indices being
fully contracted) and use of (3.18) then reduces the expression to 3!E2g. Thus,

E2g = invariant, g = det|gij|. (3.23)

It follows that, in the transformation with matrix U,

E2g = Ē2ḡ = (EU)2ḡ

– where (3.22) has been used – and hence g = U2ḡ and
√
ḡ = U−1√g. We know, however,

that U−1 = Ŭ , the determinant of Ŭ; and the transformation law for
√
g therefore becomes

√
g → √

ḡ = J
√
g, (3.24)

where J is the Jacobian of the coordinate transformation, defined by (using (refc9) for
the elements of Ŭ

J = det

∣

∣

∣

∣

∂qi
∂q̄j

∣

∣

∣

∣

. (3.25)

Volume integrals and tensor densities

After this digression let us return to the problem of defining an invariant measure of the
volume enclosed within some specified region of space (e.g. that bounded by surfaces
on which q̄1, q̄2, q̄3 have given constant values). The whole volume may be divided into
elements dV (q1, q2, q3) and we shall write

V =

∫

dV (q1, q2, q3) (3.26)

where dV is the 123-component of the tensor in (3.15) and, in rectangular Cartesian
coordinates, will reduce to the elementary definition dV = dq1dq2dq3 (a product of dis-
placements along the axial directions, each with a single non-zero component). When a
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more general coordinate system is employed, the corresponding volume element will be
expressed, using (3.26) and (3.24), as

J
√
g dV (q̄1, q̄2, q̄3).

For rectangular Cartesian coordinates, g = 1 and J = 1 and this reduces to the elementary
definition; but it is now clear that the correct definition of the volume element is not
dV = dq1dq2dq3 but rather

dV =
√
g dq1dq2dq3 (3.27)

and that in a change of coordinate system

dV → J
√
g dq̄1, dq̄2, dq̄3. (3.28)

It is also clear that in evaluating a quantity as the integral of a scalar density T =
T (q1, q2, q3) (i.e. “so much per unit volume”), the transformation law for the appropriate
integral will be

∫

T (q1, q2, q3)
√
g dq1dq2dq3 →

∫

JT (q̄1q̄2q̄3)
√
gdq̄1, dq̄2, dq̄3. (3.29)

In other words, given a scalar function T (a rank-0 tensor), then multiplication by
√
g

yields a rank-0 tensor density, usually denoted by T ,

T =
√
g T,

whose transformation law under change of variables in an integral is simply T → T̄ = JT .
The same argument applies to a tensor of any rank: thus, for a tensor T ij

k with two degrees
of contravariance and one of covariance, a related tensor density may be defined as

T ij
k =

√
g T ij

k . (3.30)

Since, according to (3.24),
√
g is merely multiplied by the Jacobian J in a change of

variables, the transformation law for the tensor density (3.30) will be

T̄ ij
k = JU i

lU
j
mŬ

n
k T

lm
n . (3.31)

It is to be noted that, since J = ±1 for any transformation that leaves the length of a
vector invariant (+1 for a proper rotation of axes, −1 for an improper rotation), a tensor
density behaves in exactly the same way as the tensor itself except that the components
suffer a sign change when the transformation is improper (e.g. changing from a right-
handed to a left-handed system of coordinates).

An important example of a tensor density, usually referred to as a pseudo-vector, is
provided by the tensor formed from two rank-1 covariant tensors, Bi, Cj. The rank-2
tensor Tij, comprising (in three dimensions) all nine components Tij = BiCj, has no
particular symmetry under interchange of indices; but it may be written as the sum of
symmetric and anti-symmetric parts 1

2
(Tij+Tji) and

1

2
(Tij−Tji). From the anti-symmetric

tensor,
Aij = (Tij − Tji),
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a rank-1 tensor density may be constructed, by using the Levi-Civita symbol (3.16), in
the form

Ai =
1

2
ǫijkAjk

and has components
A1 = 1

2
(A23 − A32) = A23

A2 = 1

2
(A31 − A13) = A31

A3 = 1

2
(A12 − A21) = A12.

In this case, where the tensor Aij is formed from two vectors Bi, Cj, it is evident that
these components, namely

(B2C3 −B3C2), (B3C1 −B1C3), (B1C2 −B2C1),

are those of the so-called vector product B×C. In fact the vector product is not a vector
but rather a rank-2 tensor density or, more briefly, a pseudo-vector. Its components, more
correctly indicated by the double indices, transform like those of a vector under pure
rotations of axes but show an additional change of sign under a reflection or inversion.

3.3 Differential operators: the covariant derivative

The laws of physics are commonly expressed in the form of partial differential equations,
which describe the behaviour of fields. The fields vary from point to point in space and
may refer to scalar quantities, such as a temperature or an electric potential; or to a vector
quantity, such as an electric field, with three components Ex, Ey, Ez; or to more general
many-component quantities such as the 9-component stress tensor in an elastic medium.
In all cases, the components are functions of position; and if the coordinate system is
changed the components will change according to the tensor character of the quantities
they describe. An important application of the tensor calculus is to the formulation
of physical laws in a form which is invariant against changes of coordinate system. To
this end it is necessary to study the differential operators which determine how a tensor
quantity changes in moving from one point in space to a neighbouring point.

A differential operator familiar from elementary vector analysis is the gradient ∇, which
describes the rate of change of a scalar field along the directions of three unit vectors.
If we use a general coordinate system the gradient operator may be written (noting the
summation convention)

∇ = ejDj = gijeiDj (3.32)

where ej and ei are, respectively, contravariant basis vectors and covariant reciprocal
vectors at the point considered and Dj = ∂/∂qj is the partial derivative with respect to the
generalized coordinate qj. Both expressions for ∇ in (3.32) display the fact that the result
is invariant against change of coordinate system, summation over the repeated indices (one
upper, the other lower) eliminating any degrees of covariance or contravariance – to leave
an invariant. In particular, the first expression for ∇ confirms that Dj is a member of a
covariant set.
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It is clearly a simple matter, once the metric tensor is known, to derive the form of the
gradient operator in any given coordinate system.

To obtain the corresponding derivatives of vector and tensor fields, however, is less easy
and requires the introduction of the ‘covariant derivative’. The root of the difficulty is
that a vector or tensor quantity implicitly refers to a set of axes in space i.e. to the vectors
of a basis; and, as already noted, the basis vectors themselves vary from point to point in
space. The covariant derivative is introduced simply to take account of this variation.

The covariant derivative

Let us consider first a vector field in which, at any point, v = eiv
i = eivi, in terms of

covariant or contravariant basis vectors. The change in any vector v, on moving from
point P to a neighbouring point P ′, will be

dv = dvje
j + vjde

j = dvjej + vjdej (3.33)

and it will thus be necessary to know how ej or ej changes in an infinitesimal change of
coordinates. The rate of change of ej with respect to qi will be a vector Diej, expressible
as a linear combination of the vectors ek, and may thus be written

Diej = Γk
ijek. (3.34)

The quantities Γk
ij are called the “coefficients of an affine connection”, being definable

even when the space does not possess a metric. But for a metric space they may be
defined also as scalar products: thus, taking the scalar product of (3.34) with a particular
reciprocal vector ek, will leave only one term on the right-hand side and this will be

Γk
ij = ek · Diej. (3.35)

In this context Γk
ij is usually referred to as a “Christoffel symbol of the second kind” and

denoted by {ij, k}.
The Christoffel symbols may also be related to the elements of the metric. Thus,

Dkgij = Dkei · ej + ei · Dkej = Γl
kiglj + Γl

kjgil,

where summation over l is implied after the last equality. Since multiplication by gil,
followed by the summation, has the effect of lowering a contravariant index l, it is natural
to express the last result as

Dkgij = Γki,j + Γkj,i.

On making cyclic permutations of the indices in this expression (kij → ijk, jki) and
adding the results, it follows easily that

Γij,k =
1

2
[Digjk + Djgki − Dkgij]. (3.36)

The quantity Γij,k is a “Christoffel symbol of the first kind” and is usually denoted by
[ij, k]. It is clearly sufficient to know the latter since the index k may easily be raised:

Γk
ij = gknΓij,n, (3.37)
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or, with Christoffel notation4, {ij, k} = gkn[ij, n].

Now that the coefficients in (3.34) may be regarded as known, we can return to the
discussion of how a vector changes on moving from P to a neighbouring point. Let
us take the vector with covariant components, v = ejvj, and consider the differential
dv = vjde

j + dvje
j. On dividing by dql and passing to the limit, it follows that

Dlv = (Dle
j)vj + ejDlvj, (3.38)

where the first term, arising from variation of the basis vectors, would be absent in a
Cartesian coordinate system. The derivative vector Dlv may be expressed in terms of
either direct or reciprocal vectors: choosing the latter, we define (note the semicolon in
the subscript!)

Dlv = vi;le
i ,

where vi;l stands for the ith covariant component of the derivative with respect to coordi-
nate ql. As usual, this component can be picked out by taking a scalar product with the
corresponding contragredient vector ei. Thus, making use of (3.38),

vi;l = ei · (Dlv) = ei · (Dle
j)vj + δjiDlvj.

The first term on the right-hand side of this expression contains essentially a Christoffel
symbol: for if we take the derivative of the scalar product ek · ei, which is of course an
invariant, we obtain

Dj(e
k · ei) = eiDje

k + ekDjei,

in which the second term in the sum is the Christoffel symbol {ij, k} defined in (3.35) et
seq. Evidently, then,

vi;l =
∂vi
∂ql

− {il, j}vj . (3.39)

This equation defines the covariant derivative of the vector whose covariant components
are vi, with respect to the coordinate ql; the first term (often denoted by vi,l) is simply
the derivative of the component vi itself, while the second term arises from the change
in the basis vector ei to which it is referred. In a Cartesian system, the second term is
always absent, all the Christoffel symbols being zero.

Absolute differentials

It is now important to establish that the quantities vi;l do indeed form a set with tensor
properties, and to show how one can construct an absolute differential dv - an infinites-
imal vector that will be invariant against change of coordinate system. To do this, we
must evaluate the same quantities in a new coordinate system {q̄i} and establish their
transformation law. Instead of vi,Dl, and ej we shall then have corresponding quantities

v̄i = Ŭ r
i vr, D̄l = Ŭ s

l Ds, ēj = U j
t e

t,

the first two being covariant, the third contravariant. These equations simply express the
known tensor character of all three quantities. We now need to evaluate the analogue of

4Nowadays used less widely than in the classic texts.
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equation (3.39) in the new coordinate system. Thus, the first term will become

∂v̄i
∂q̄l

= Ŭ r
i Ŭ

s
l

∂v̄r
∂q̄s

and, remembering that {il, j}=ei · Dle
j, the new Christoffel symbol will be

{il, j} = Ŭ s
i es · Ŭ t

lDtU
j
ue

u = Ŭ s
i Ŭ

t
lU

j
u{st, u}. (3.40)

The second term on the right in (3.39) then becomes, using (3.40),

−{il, j} = Ŭk
j vkŬ

s
i Ŭ

t
lU

j
u{st, u} = Ŭ s

i Ŭ
t
l {st, k}vk,

where it was noted that Ŭk
j U

j
u = δku. Finally then, substituting this result in (3.39),

v̄i;l = Ŭ s
i Ŭ

t
l

(

∂vt
∂qs

− {st, k}vk
)

= Ŭ s
i Ŭ

t
l vs, t (3.41)

and it follows that the set of covariant derivatives constitutes a rank-2 tensor, covariant
in both indices i, l.

Exactly similar reasoning may be applied to a contravariant vector, with components vi:
in this case the covariant derivative is defined as

vi;l =
∂vi

∂ql
− {jl, i}vj (3.42)

and the transformation properties corresponding to (3.41) are found to be

v̄i;l = U i
sŬ

t
l v

t
, t . (3.43)

The covariant derivative of a contravariant vector, with components vi, is thus again a
rank-2 tensor, but is contravariant in the index i and covariant in the second index.

It is easily verified that

gijv
i
;l = vj;l (3.44)

– which confirms that vi;l and vi;l are components of the same vector – namely the covariant
derivative of the original v – and obey the usual rules for raising and lowering of the
indices. It is also clear that if the components vi;l or vi;l are multiplied by the infinitesimal

coordinate change dql and summed the result will be

dvi = vi; ldq
l dvi = vi; ldq

l. (3.45)

These are, respectively, the contravariant and covariant components of an absolute dif-

ferential dv, which is invariant against change of coordinates and may therefore be as-
sociated with a real physical quantity.

21



3.4 Divergence, curl,

and the Laplacian

Now that the covariant derivative has been defined, through (3.42) and (3.44), for either
the contravariant or covariant components of any field vector, it is possible to pass to
higher derivatives. An important second-order differential operator is the ‘divergence’,
defined in Cartesian vector space as

div v =

(

∂vx
∂x

)

+

(

∂vy
∂y

)

+

(

∂vz
∂z

)

= Div
i, (3.46)

where summation is implied, as usual, in the last form. The natural generalization, on
transforming to curvilinear coordinates, will then be

div v = vi; i = Div
i + vjΓi

ji, (3.47)

which involves the covariant derivatives given in (3.42) and reduces to (3.46) for the
Cartesian case where all Christoffel symbols are zero. This quantity is a scalar invariant
(tensor of rank zero) as a result of contraction over identical indices.

It remains only to determine the Christoffel symbols; and this may be done by relating
them to the metric tensor, presented as a matrix in (3.13). The determinant of a matrix
g is usually expressed in the form

g = |g| = gijG
ij, (3.48)

where Gij is the cofactor of element gij. But it was shown in Section 1.6 that gij has a
contravariant counterpart gij, whose elements are those of the inverse matrix g−1, and
consequently gijg

ij = 1. Equation (3.48) is therefore a trivial identity, in which Gij = g gij.

The Christoffel symbols appear when we differentiate the determinant with respect to
the parameters qi which define the coordinate system to be used. It is well known that
the derivative with respect to any parameter, qk say, is obtained by differentiating each
element separately, multiplying by its cofactor, and summing. Thus, from (3.48), with
Gij = gGij and gij = ei · ej,

Dkg = (Dkgij)G
ij + ggijDk(ei · ej)

= ggij[(Dkei) · ej + ei · (Dkej)]

= ggij[(Γl
kiel) · ej + ei · (Γl

kjel) · ej],

where each of the terms on the right may be reduced separately by using the basic prop-
erties (equation (2.9) et seq) of the metric tensor gij. On taking the first term,

[Γl
kiel · ej] = [Γl

kiglj] = [Γjk,i],

where index l was replaced by covariant j in the summation over l. When this result is
multiplied by ggij and summed the result is gΓi

ki. The second term reduces in a similar
way, to give an identical result, and consequently

Dkg = 2gΓi
ki, (3.49)
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which could be used in (3.47) to give

div v = Div
i + vjDjg/(2g).

A neater result is obtained, however, on multiplying this last equation by
√
g and noting

that the right-hand side then becomes the derivative Di(v
i√g). In this way we find

div v =
1√
g
Di(v

i√g) = 1√
g

∂

∂qi

(

vi
√
g)
)

. (3.50)

This is a completely general expression for the divergence of v at any point in a vector
field, using curvilinear coordinates of any kind.
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Chapter 4

Applications in Relativity Theory

4.1 Elements of special relativity

The special theory of relativity provides the simplest possible application of general tensor
methodology. There is a fundamental invariant, on which the whole of the theory is based:
it is the square of the interval between two events, each specified by four coordinates
(x, y, z, ct) – the three spatial coordinates of a point, together with the time (multiplied
by c, the velocity of light in free space). The interval is in fact taken to be

ds : (dx, dy, dz, cdt)

and the fundamental invariant is

ds2 = −dx2 − dy2 − dz2 + c2dt2 = c2dτ 2 = invariant. (4.1)

By writing the invariant as c2dτ 2 we simply introduce a proper time interval between the
two events; and (4.1) implies that events will be recorded in a four-dimensional space
with metric

g11 = g22 = g33 = −1, g44 = +1, (4.2)

all other elements of the matrix g being zero. This type of vector space was first used
by Minkowski (1908): it is a linear space, in which orthogonal basis vectors have been
set up, and the metric is taken to be independent of position (i.e. values of the variables
x, y, z, t). The differential form of the squared distance between two ‘points’ therefore
applies even when the points are not close together; and we may write

s2 = −x2 − y2 − z2 + c2t2 = invariant, (4.3)

where x, y, z, ct may be the coordinates of any event, relative to an (arbitrary) origin with
x, y, z, ct = 0. An event is typically a point on a wavefront, originating at the origin at
time t = 0 and propagating outwards with velocity c, or a particle in motion at the given
point.
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If the same event is recorded by a second observer, in uniform motion relative to the first,
it will be given coordinates (again including the time!) x̄, ȳ, z̄, t̄ and the squared distance
to the point in question will be

s̄2 = −x̄2 − ȳ2 − z̄2 + c2t̄2. (4.4)

The ‘invariance of the interval’ requires that s2 as measured by the two observers will be
the same for a common value (c) of the velocity of light propagation. And this principle,
experimentally verified, implies that the two sets of coordinates are related in a particular
way, namely by a Lorentz transformation. The simplest example of such a transformation
is the one that relates the space-time coordinates for two reference frames: (i) that located
at the origin (Observer 1), and (ii) one travelling with speed u along the x axis (Observer
2). The coordinates of an event, as recorded by Observer 1, will be denoted by x, y, z, ct,
while those for Observer 2 will be x̄, ȳ, z̄, ct̄.

The ‘common sense’ relationship between the two sets of coordinates is simply

x̄ = x− ut, ȳ = y, z̄ = z, t̄ = t (4.5)

but s̄2 obtained by substituting (4.5) in (4.4) does not agree with s2 given by (4.3). To
achieve the required invariance, the transformation law must be modified. Instead of
(4.5), the correct coordinates to use in Frame 2 turn out to be

x̄ = β(x− ut), ȳ = y, z̄ = z, t̄ = β(t− ux/c2), (4.6)

where β also depends on the relative velocity u and is

β = βu =
1

√

(1− u2/c2)
. (4.7)

The invariance of s2 is confirmed by substituting (4.6) in (4.4) and finding s̄2.

The equations in (4.6) define the ‘standard’ Lorentz transformation – which is easily
inverted to give

x = β(x̄+ ut̄), y = ȳ, z = z, t = β(t̄+ ux̄/c2), (4.8)

It is unnecessary to consider the more general situation, in which Frame 2 moves in any
given direction relative to Frame 1, because we are setting up tensor equations – which
must remain valid under any corresponding linear transformation of coordinates.

Some important four-vectors

Let us now introduce the general tensor notation of earlier chapters. It is customary to
replace the coordinates x, y, z, ct by x1, x2, x3, x4 when the tensor formalism is used1. And
in this case we express the interval through its contravariant components as

dsµ : (dx1 = dx, dx2 = dy, dx3 = dz, dx4 = cdt). (4.9)

1It is not strictly necessary to use the general formalism in the special theory, where the distinction
between spatial and temporal components may be recognised by introducing factors of i and a ’pseudo-
Cartesian’ metric with g = 1. Here, however, we use the full notation that applies also in Einstein’s
general (1916) theory.
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This choice will set the pattern for all subsequent transformation equations, as in previous
Chapters; and covariant components may be obtained from it by lowering the indices
using the metric tensor (4.2), dxµ = gµνdx

ν . Thus, the interval will have corresponding
covariant components

dsµ : (dx1 = −dx, dx2 = −dy, dx3 = −dz, dx4 = cdt). (4.10)

It is important to note that the proper time interval defined in (4.1) et seq has a special
significance: A clock at rest relative to the the moving Frame 2 will show time t̄ and, since
its relative coordinates are constant (it is moving with the frame), dx̄ = dȳ = dz̄ = 0 and
thus c2dτ 2 will coincide with c2dt̄2. This is true for any frame whose clock is at rest; and
allows us to define immediately a velocity four-vector, for Frame 1, whose components
will be

vµ =
dxµ

dτ
=
dxµ

dt

dt

dτ
= β

dxµ

dt
(4.11)

– since dt(Frame 1, clock at rest)= βdτ , from (4.8), and hence dt/dτ = β. The velocity
four-vector will thus be, using a dot to indicate a time derivative,

vµ : (v1 = βẋ1, v2 = βẋ2, v3 = βẋ3, v4 = βc). (4.12)

Similarly, for a particle with a postulated ‘rest mass’ m0 (assumed to be an invariant
natural characteristic), one may define a momentum four-vector, by multiplying (4.12)
by m0. Thus,

pµ : (p1 = m0βẋ
1, p2 = m0βẋ

2, p3 = m0βẋ
3, p4 = m0βc). (4.13)

For a particle at rest in Frame 2 its momentum relative to Frame 1 will be p1 with ẋ1 = u:
and evidently the quantity

m = m0β =
m0

√

(1− u2/c2)
(4.14)

will be an ‘apparent mass’ for Observer 1. The mass of a particle, moving relative to the
observer, thus increases with its velocity, becoming infinite as u approaches c. On the
other hand, when u≪ c, it follows that

m = m0β ≈ m0(1 +
1

2
u2/c2) = m0 + (1

2
m0u

2)/c2 (4.15)

and consequently that the classical kinetic energy 1

2
m0u

2 makes a contribution to the
mass. If we introduce Einstein’s famous mass-energy relation, E = mc2, this last result
suggests that

E = mc2 = m0c
2 + 1

2
m0u

2 + . . . . (4.16)

The four-vector in (4.13) is thus an energy-momentum four-vector, whose fourth compo-
nent is

p4 = m0βc = E/c. (4.17)
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Before introducing electromagnetic four-vectors, we recall that the differential operators
Dµ = ∂/∂xµ follow the covariant transformation (see xxx), and accordingly may be dis-
played as

Dµ :

(

D1 = +
∂

∂x1
, D2 = +

∂

∂x2
, D3 = +

∂

∂x3
, D4 =

∂

∂x4

)

, (4.18)

where, since dx4 = cdt, it follows that

D4 = D4 =
1

c

∂

∂t
. (4.19)

It is also clear that a four-dimensional equivalent of the operator ∇2 may be formed by
contraction: it is ⊔̄2, defined as ⊔̄2 = DµD

µ, where the contravariant Dµ is obtained by
raising the index in the usual way. Thus

⊔̄2 = − ∂2

∂x2
− ∂2

∂x2
− ∂2

∂x2
+

1

c2
∂2

∂t2
= −∇2 +

1

c2
∂2

∂t2
. (4.20)

4.2 Tensor form of Maxwell’s equations

Let us start from the three-dimensional Cartesian forms of the equations for the magnetic
field due to a system of moving charges. The aim will be simply to cast the equations in
a very succinct form by introducing four-vector notation and then to demonstrate that
they are already Lorentz invariant.

In free space, the electromagnetic field at any point may be specified by giving the com-
ponents (Ex, Ey, Ez) of the electric field strength E, together with those of the magnetic
flux density B (namely, Bx, By, Bz). We shall employ SI units throughout and use, where
appropriate, the notation of elementary vector analysis. The differential equations satis-
fied by the fields, relating them to the electric charges and currents which produce them,
are as follows:

divE = ǫ0ρ, (a) curlE = −∂B
∂t
, (b) (4.21)

where ρ is the electric charge density (charge per unit volume) at the field point, and

divB = 0, (a) curlB =
1

c2
∂E

∂t
+ µ0J, (b) (4.22)

where J is the electric current density (a three-component vector density). The constants
ǫ0 and µ0 are, respectively, the permittivity and the permeability of free space. It is shown
in all standard textbooks that the fields propagate with a velocity c given by

c2 = (ǫ0µ0)
−1. (4.23)

It is also known that the fields may be derived from a scalar (electric) potential φ and a
(magnetic) vector potential A, according to

E = −gradφ− ∂A

∂t
, (a) B = curlA; (b) (4.24)
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and the potentials may be assumed, with no loss of generality, to satisfy the equation

divA+
1

c2
∂φ

∂t
= 0. (4.25)

This equation corresponds to use of a particular ‘gauge’ in defining the potentials (the
Lorentz gauge), which will be assumed throughout.

In terms of the potentials, the key equations (4.21)a,b and (4.22)a,b, may be presented
in the alternative forms

∇2φ− 1

c2
∂2φ

∂t2
= −ǫ0ρ, (4.26)

∇2A− 1

c2
∂2A

∂t2
= −µ0J. (4.27)

Let us now replace the vectors J and A by new four -vectors, with contravariant compo-
nents

Jµ : (J1 = Jx, J
2 = Jy, J

3 = Jz, J
4 = cρ) (4.28)

and

Aµ : (A1 = Ax, A
2 = Ay, A

3 = Az, A
4 = φ/c). (4.29)

The three-divergence divA, which appears in (4.25), may clearly be written as a con-
tracted tensor product divA = DµA

µ (µ = 1, 2, 3), the contraction being restricted to
the first three components in (4.28): thus

divA = DµA
µ ∂

∂x
Ax +

∂

∂y
Ay +

∂

∂z
Az.

But now we may define a four -divergence, distinguished by an upper-case “D”, and con-
tract over all components in (4.18) and (4.28) to obtain

DivA = DµA
µ =

∂

∂x
Ax +

∂

∂y
Ay +

∂

∂z
Az +

1

c

∂

∂t

(

φ

c

)

, (4.30)

the D4 component being defined in (4.19). Consequently,

DivA = DµA
µ = divA+

1

c2
∂φ

∂t
. (4.31)

The choice of the fourth component in (4.30) is thus appropriate: on putting DivA = 0
we retrieve equation (4.25), which relates the potentials, in the form DuA

µ = 0. As this
is a tensor equation its form will be left unchanged by any transformation that leaves the
metric invariant.

Next we define the antisymmetric rank-2 four-tensor (first lowering the indices on Aµ)

Fµν = DµAν − DνAµ (µ, ν = 1, 2, 3, 4) (4.32)
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and interpret particular components by referring to the three-space equations. Evidently,
since ∂/∂x4 = (1/c)∂/∂t,

F41 =
1

c

∂

∂t
(−Ax)−

∂

∂x

(

φ

c

)

=
1

c

(

−∂Ax

∂t
− ∂φ

∂x

)

=

(

Ex

c

)

by virtue of (4.24)a; and in the same way it appears that F42 = Ey/c, F43 = Ez/c.
If the Fµν are set out in a 4 × 4 matrix, the last row (µ = 4) will contain elements
Ex/c, Ey/c, Ez/c, 0; and similarly the last column will contain the same elements with
a sign reversal (the matrix being antisymmetric).

Next consider the case µ, ν < 4: the components may then be identified with magnetic
field components. Thus, for example,

F12 =
∂

∂x
(−Ay)−

∂

∂y
(−Ax) = −Bz,

as follows from (4.24)b and the three-space definition of curlA. In the same way we find
F13 = By and F23 = −Bx.

The full matrix F thus has elements

Fµν =









0 −Bz +Bx −Ex/c
+Bz 0 −Bx −Ey/c
−Bx +Bx 0 −Ez/c
Ex/c Ey/c Ez/c 0









.

The corresponding contravariant tensor will be F µν = gµρgνσFρσ: its upper left-hand block
is identical with that of Fµν but the last row and column are changed in sign. From the
electro-magnetic field tensors Fµν and F

µν we can easily express all the Maxwell equations
in a succinct tensor form.

First we recall that the equations in (4.21) and (4.22) involve not only the fields E and B

themselves but also their divergence and curl; and they also involve ρ and J, which are
collected in the charge-current four-vector (4.28).

Let us now define two new tensors, by combining the differential operators Dmu with the
field tensors:

Xλµν = DλFµν + DµFνλ + DνFλµ Y µ = Dλ, Y µ = DλF
λµ. (4.33)

The first of these, Xλµν , is a rank-3 covariant tensor, sometimes called the “cyclic curl”
(the indices in the three terms following the cyclic order λµν → µνλ → νλµ). The
second, after the contraction over λ, is evidently a rank-1 contravariant vector. Again,
one can evaluate particular components and establish their meaning by comparison with
the Maxwell equations.

For example, putting λµν = 123,

X123 = D1F23 + D2F31 + D3F12 =
∂

∂x
(−Bx) +

∂

∂y
(−By) +

∂

∂z
(−Bz) = −divB,
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while for λ = 4 (the time component), putting µν = 23, 31, 12 in turn, we find the x-,y-
and z-components of

−1

c

∂B

∂t
− 1

c
curl E.

On setting the X-tensor to zero (all components) we therefore obtain the equivalent
statement

divB = 0, curlE = −∂B
∂t

(4.34)

– coinciding with the Maxwell equations in (4.22)a and (4.21)b, respectively.

The two remaining equations, (4.21)a and (4.22)b, involve the charge and current densi-
ties ρ and J, respectively, which are contained in the contravariant four-vector Jµ. By
evaluating Y µ, which has the same tensor character as Jµ, we find that the components
for µ = 1, 2, 3 coincide with the three components of

(

1

c2
∂E

∂t
− curl B

)

,

while the µ = 4 component yields
(−divE

c

)

.

Comparison of the first expression with (4.22)b identifies it as the three-vector part of
−µ0J; while the second expression coincides with the fourth component, namely −µ0cρ.

In summary, we have shown that the tensor equations

Xλµν = 0, (a) Y µ = −µ0J
µ (b) (4.35)

embody in themselves the whole system of three-vector equations due to Maxwell: they
completely determine the electric and magnetic field vectors, at all points in space, arising
from any given distribution of electric charges and currents. Furthermore, by introducing
the ‘quad-squared’ operator defined in (4.20), the equations (4.26) and (4.27), which
relate the scalar and vector potentials to the electric charge and current densities, may
be condensed into the single four-vector equation

⊔̄2 A = −µ0J (4.36)

– as may be confirmed by using (4.20), (4.28), (4.29) and remembering that µ0ǫ0 = c−2.

This is not the place to discuss the striking physical implications of the conclusions just
presented (see, for example, W. Rindler Essential Relativity, 2nd edn, Springer-Verlag
1977, for a beautiful exposition) and we return at once to the tensor formalism.
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